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Abstract—A theoretical model for heat transfer and fluid flow during alloy solidification is presented. A

detailed accounting has been made for the property variations in the dendritic phase-change region. A

generalized porous medium approach has been adopted, with the variation of permeability being aniso-

tropic. The effects of anisotropy are observed to be significant if the extent of the mushy zone is large or
if the Rayleigh number is high.

INTRODUCTION

SoLIDIFICATION of an alloy metal poses many for-
midable challenges for theoretical analysis. Unlike in
pure metal systems, the phase-change occurs over a
range of temperatures encompassing a finite volume.
The zone where solidification takes place (known as
the mushy region) comprises both the solid and the
liquid phases and is characterized by the growth of
finger-like (dendritic) structures [1-3]. The buoyancy-
driven flow of fluid in the mushy and fully-liquid
regions significantly influences the rate of solidifica-
tion as well as the shape of phase fronts, during the
phase-change process. The presence of the alloying
component often leads to mass transfer which greatly
alters the microstructure and the mechanical prop-
erties of the solidified metal. In addition, the thermo-
dynamic and transport properties vary continuously
over the whole domain of the mushy zone which needs
to be taken into account in any accurate theoretical
modelling.

Various approaches have been adopted to model
the flow in the mushy region. The most widely-used
among them are the pseudo-viscosity method [1], the
velocity ‘switch-off” technique [2] and the porous
medium approach [3]. Of the above, the porous
medium model presents the most realistic view of the
resistance offered by the dendrites to the flow in the
mushy zone. The porosity of the equivalent porous
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medium is taken equal to the volume fraction of the
liquid. Evidently, the porosity is non-uniform in the
mushy zone, varying from a value of unity in pure
liquid to zero in the solid.

Although the variable property porous medium
approach has been adopted by many recent studies of
alloy solidification, the important aspect of aniso-
tropic variation in permeability in the mushy zone has
largely been ignored [4, 5]. For alloy metals, the fact
that the mushy zone consists of a mixture of saturated
solid and liquid phases in varying proportions, leads
to a continuous variation in every thermodynamic or
transport property. In addition, the strongly direc-
tional nature of the dendrites results in anisotropic
permeability of the porous medium in directions par-
allel and normal to the dendrites [6].

In the present study, the thermal and flow aspects
of two-dimensional solidification are investigated. All
the important variations of properties have been taken
into account, including the anisotropic nature of the
mushy zone permeability. A fixed-grid methodology
based on the finite element method has been
implemented, which is suitable for analysing alloy
solidification in any arbitrary two-dimensional
geometry.

MATHEMATICAL FORMULATION

The two-dimensional solidification of an alloy
material inside a rectangular enclosure with two adia-
batic and two isothermal walls is considered.
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coefficients as defined by equation (32)

d,.d, primary and secondary dendrite
spacings

e index for element number

E total number of elements

fi. /a2 S5 fs elemental sub-matrix coefficients
as defined by equation (32)

g acceleration due to gravity

h specific enthalpy ; heat transfer
coeflicient

hy latent heat of phase-change at solidus
temperature

j unit vector along y-axis
k thermal conductivity
K permeability tensor
K|, K, tensorial components of K in
principal directions
K..K.. K, K, tensorial components of
K in global Cartesian coordinate system
L width of the cavity

m, m,, m, morphology parameters

M non-dimensional morphology
parameter ; linear shape function

N quadratic shape function

Nu, local Nusselt number on hot wall, #L/k,

Pr Prandtl number

p. P dynamic pressure (dimensional and non-
dimensional)

R non-dimensional porous medium
resistivity tensor as defined by
equation (9)

R..,R.., R, R, tensorial components of
R in global Cartesian coordinate system

Ra Rayleigh number

Ste  Stefan number

NOMENCLATURE
A parameter as defined by equation (25) ! time
A clemental arca T temperaturce
As aspect ratio of the cavity \% superficial (area-averaged) velocity
¢ specific heat vector
C,,, C,,, etc. elemental sub-matrix w, v, U, V' components of superficial velocity

(dimensional and non-dimensional)
X, ¥, X, Y Cartesian coordinates
(dimensional and non-dimensional).

Greek symbols
o thermal diffusivity
B cocfficient of thermal expansion of liquid
" angle made by the local gradient of
temperature with x-axis
& porosity (volume fraction of liquid)

0 non-dimensional temperature
A latent heat of phase-change

u viscosity

v kinematic viscosity

o density

0,,0,, 05,0, non-dimensional variables as
defined by equation (25)

T non-dimensional time

At non-dimensional time-step

Q area of the calculation domain.
Subscripts

c cold wall

h hot wall

i,j nodal indices

init  initial condition

1 liquid or liquidus

0, ref reference values

s solid or solidus.

Superscripts

0 value corresponding to previous time-
step
value corresponding to previous iteration

* non-dimensional normalized value.

Although mass transfer of the alloying component
has important bearing upon the mechanical properties
of the solidified material and also it partially affects
flow and heat transfer processes, it has been ignored
in the present study for the sake of simplicity. The
flow field is represented in terms of the superficial
velocity vector V (area-averaged vectorial velocity).
By definition, the superficial velocity vector becomes
zero in the solid region and equal to the actual velocity
vector in the fully-liquid region. In the mushy zone, it
depends on the local porosity and needs to be evalu-
ated through the flow equations appropriate for a
porous medium.

For a densely-packed medium with small pore-spac-

ing, Darcy proposed that the pressure drop through
the medium is directly proportional to the flow rate
and fluid density, and inversely proportional to the
permeability of the medium. The permeability, in
turn, was defined as an intrinsic property of the porous
medium which characterizes the flow resistance
offered by the medium. Later modifications to Darcy’s
law have included the contributions of viscous and
inertial stresses to the pressure gradient in the flow
field [7, 8]. These are applicable for large pore-spacing
(or high porosity), high flow rates and when boundary
layers exist adjacent to the confining impermeable
walls of the porous medium.

In the present study, the generalized Darcy’s equa-
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tion has been considered which bears a close resem-
blance to the Navier—Stokes equations, except for the
term representing the resistance of the solid matrix.
Such a description is essential for the alloy sol-
idification problem since the variation of porosity
across the mushy zone spans the entire possible range
of zero to unity. Moreover, for the range of par-
ameters studied herein, the inertial effects are sig-
nificant and flow regions displaying boundary layer
nature exist close to the walls of the enclosure [9].
Assuming the Boussinesq approximation for liquid
density variation to be valid, the governing equations
for flow through the anisotropic mushy zone can be
represented as:

Continuity

d
2 PIP) V-V =0 (1

Momentum

1
= — —Vp+wV- [pv <&V>]
P P p

-'gB(T— Tref)_vl[l=(]71.v (2)

Energy
é(ph)+pV-Vh =V-kVT+h — 3
91 1 i ]at' ( )

Except for the anisotropic permeability term, these
equations are similar to those derived by Bennon and
Incropera [10] for alloy solidification with a stationary
solid matrix in the mushy zone. In the momentum
equation given above, the buoyancy contribution aris-
ing from concentration gradients of the alloying com-
ponent has not been considered. This assumption can
be justified if the concentration of the alloying com-
ponent is very small. Some of the earlier investigators
[11] have used the porous medium enthalpy 4 in place
of liquid enthalpy 4, in the convective term of the
energy equation (3). The inconsistency resulting from
such usage is reported elsewhere [9].

In order to incorporate the realistic nature of flow
resistance offered by the dendritic structures in the
mushy zone, it is necessary to consider the per-
meability to be dependent on direction. For instance,
Poirier [6] has shown that the permeability values are
vastly different from each other (sometimes differing
by orders of magnitude) in directions parallel and
normal to the dendrites. Considering the dendrites as
a bank of cylindrical objects and using the appropriate
Blake-Kozeny pressure drop correlations, he has
derived the following expressions
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m,e’
= a»_ig)z (4a)
and
m,e’
K, = (1_;)o7s (4b)

where K, and K, are respectively the permeabilities
in the directions parallel and normal to the dendrites,
¢ is the medium porosity and m,, m, are parameters
which depend on the morphology of the dendrites.
The parameters m, and m, can be correlated to the
primary and secondary dendrite spacings ¢, and d,
[6] through the relations

m, = c(e)did} (5a)

and

m, = ¢,(e)d\d5. (5b)

In the region where flow is significant (¢ > 0.3), the
functions ¢,(¢) and c,(¢) are nearly constants and
therefore without much loss in accuracy constant
values may be used for them. The values of the den-
drite spacings d,, d, and the exponents p, q, r, S
depend on the nature of the alloy system. For a typical
system such as Pb-Sn alloy, it turns out that m, ~ m,
if d,/d, is taken as 3 (see ref. [6]). In all the numerical
computations performed in the present study, it has
been assumed that m, = m, = m. The corresponding
permeability expressions are of the form

me
K, = 9" (6a)
and
me’
K, = (1=g°7* (6b)

where the constant m can be taken to be a charac-
teristic parameter of the alloy system.

Having obtained the permeabilities K, and K, in
the principal directions, it still remains to determine
what the principal directions are, at any location in
the mushy zone. It can be argued that the primary
dendrite direction should be along the local normal
to the isotherm passing through the point, since den-
drites tend to grow in that direction [12]. Similarly,
the transverse direction for the dendrites can be taken
parallel to the isotherm. Thus, permeability can be
defined as a tensor

K, 0
-0 & o

in the coordinate system of the principal directions.
For a global Cartesian system, the permeability can be

represented as
K.. K,
— xx Xy 8
LS [K K ] ®)

»x Yy

where the tensorial components K, K,,(=K,,) and
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K,, can be obtained using the rules of tensorial trans-
formation.

It is more convenient to use the non-dimensional
‘matrix-resistivity’ tensor R in place of the per-
meability tensor in the flow equations. Defining

R =m[K]"' ®

it can easily be verified that R is dimensionless and
depends only upon the local porosity. The com-
ponents of R are given by

k _n[KTK KK
w TSR K, T 2K K,

cos 2y:| (10a)

R, =m| Ktk KK s (10b)
o TR K, KK, O
R, =R 1=K in 2 (10c)
o=R,=—m sin 2. C
v =5 2K, K, Y

In the above expressions, y is the angle made by the
primary dendrite direction with the x-axis (Fig. 1) and
it is given by

an

where 0T/0x and 6T/dy are the local directional
derivatives of the temperature field.

With regard to the energy equation, suitable
approximations are to be invoked for evaluating the
enthalpies # and /%, and also the porous medium
density p and the effective thermal conductivity k. It
is important to note that p and & are volume-averaged
properties while enthalpy and specific heat are mass-
averaged. Thus, the properties for the mushy zone can
be written in terms of the corresponding values of the
liquid and solid phases as follows

o =ep+(1—8)p, (12a)
k = ey + (1 —e)k, (12b)
o= PO (1 —#)p,c (12¢)
P
and
yryyi LLLLLLLLLLLLLL
T Th

<

X

FiG. 1. Approximate direction of growth of primary dendrite
at a point in the mushy zone.
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y o ot (0 =8)ph
I ’

(12d)

However, the key relationship still needed is the one
between the liquid fraction, the local temperature and
the local concentration. For dilute systems, the prop-
erties such as density and conductivity can be taken
as functions of temperature only, since a small quan-
tity of the alloying component is not expected to alter
the values significantly. An additional simplification
which is highly useful. is the linear dependence of
density upon temperature in the mushy-zone. For
many alloy systems, the change in density from solid
to liquid is not large. For instance, mild steel under-
goes roughly 6% increase in density upon solidi-
fication. In view of the small change in density, a
linearization may be justified. Considering constant
densities for solid and liquid phases, the density vari-
ation can be represented as shown in Fig. 2(a). Refer-
ring to the figure, the lever rule leads to the expression

T-T
T -1

N

LT )

p:ps +P|

Comparing expressions (12a) and (13), the liquid frac-
tion ¢ can be written as
_T-T,

B

(14)

The enthalpy vs temperature relationship is of the
form depicted in Fig. 2(b). The latent heat of sol-
idification is obviously a function of temperature and
can be written in a general form as

T T
}L(T)=hf+f c,dT—J e, dT (15)
T, T,

with
hy= NT,).
The liquid enthalpy 4, is given by

(16)

f
) ; L
Ts T T
T
— — —-— Soturated solid/ liquid
- -~ Liguid
h _-r" {b)

- E\(T)’ -

Solid_ _—-="" X
To Ts T T

T

F1G. 2. Variation of density (p) and enthalpy (h) with
temperature.
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thy=jfng+Aav (17

0

where the enthalpy of solid is assumed to be zero at
temperature T,. For the sake of convenience, the
value of T, can be set equal to zero. Using constant
values of specific heats in both the phases, the fol-
lowing relations are obtained

MT) = h+(e—e)(T—T)) (18)
and
h(T) = c,T+AT). (19)
The mixture enthalpy at a location in the mushy zone
is given by
_ ps_(l_—— e)e, T+ pieh
p

h (20

Using the above-described functional dependences
for properties, the non-dimensional equations can be
derived as

G, LOU OV _
ot ' 60X ey

L A W A T
T3 G, + X \o, dY \o,
_ P e 20, 0 (Y
= Tax T ax % ax\a,

2 o (U
+6Y{mé%<;>}}—bﬂRnU+RuV) 22)

0 @2n

0 vV
¥ ﬁ{‘“ av (*)H ~MEL+RY)

+Ra Pro (23)

0 0 o0 o[ a0
b “ SO S
(@2t do) g TV +Voy ay(kax)

+ 2 (k* @> +a. 22 24

Y Y ot
where

x y ul vL ot

== =2, U= — == =
X L’ Y L’ oy’ oy L

L? T-T, L?
P=pv772’ _ ref, =V| , ch
Pi%o T,—T. ma, %o
gL’ (T, —T.) ko
Ro==————", o,=

R =
AW [4141
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k
k*_ ) vl=ﬂl) Gl_ﬁ, 2_ﬁ
kg P P PG
h - T X
0_3=pl f+(pl ps)cs s+ {I_st}s
pic(T—T)) f4Le]
_ fsTs +h,+€1(]—'1 - Ts)g
7o (T, —-To)
1 for 6>=0,
0—0,
8= 77 <<
) for 6, <60<6,
0 for 0<80,
and
1 when 0,<0<6,
A= 0 otherwise (25)

For the rectangular enclosure (Fig. 3) the following
boundary conditions have been applied. Referring to
Fig. 3

U=V=0
0= _1 for X=0, 0<Y<As (26a)
U=V=0
* 4 for Y=0, 0<X<I (26b)
Y
U=V=0

for X=1, 0<Y<ds (26¢)
6=0
U=V=0
%_0 for Y=4s, 0<X<l. (26d)
=

The initial conditions are
U=V=0=0 at t=0. (26¢)

The generalized formulation presented above

Q
]

By - 9
u=v= 0
ya £ ya LLL L
uzv=0 u=v:=0
T=T ‘2 T=Th
y
T
u=v=0 att=0
aT u=v=0
_=O _ .
x Ay T=Ti
1 -l
r~ L 1

FiG. 3. Problem geometry with boundary and initial
conditions.
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involves constant dimensionless parameters such as
Ra, Pr. M. 0., 0, k jk,and k/k as well as the dimen-
sionless variable cocfficients ¢,. g.. o, and o, whose
values change across the mushy zone. For the para-
metric study, the densitics and the specific heats have
been taken to be equal for both the phases and this
leads to the simplification

I,

=1, » =1 and = Ste = o e,
A AR C S
A summary of all the property/parameter values used

in the numerical calculations is provided in Table 1.

SOLUTION PROCEDURE

The governing equations (21)-(25) have been
solved numerically subject to the boundary and initial
conditions (26a)-(26e), along with permeability cal-
culations via equations (10) and (11). An implicit time
marching procedure coupled with the finite element
method {(FEM) has bcen employed. Although a
simple rectangular geometry has been studied herein,
a general 2-D/axisymmetric code has been developed
which can easily be applied to any arbitrary geometry.
The choice of FEM has specific advantages for the
modelling of the alloy solidification problem. In view
of the powerful interpolation and numerical inte-
gration schemes employed in FEM, property vari-
ations can be accounted for even within a single
clement.

Eight-noded serendipity type elements have been
used to discretize the solution domain. Temperature
and velocity variations have been interpolated with
quadratic functions while pressure has been inter-
polated linearly within each element. The elemental
interpolation schemes can be expressed in terms of the
nodal variable values as

§

U=7Y NU,
=t

&
V=Y NV,
i1

R 4
0= N0, P=73 MP
|

J= i

an

where N,, M; are the quadratic and linear shape func-
tions respectively. The lower-degree interpolation for

Table 1. Test problem data

As 1.0

kkq 1.0, 1.5
kifkg 1.0,0.5

M 10°

Pr 107

Ra 10°, 104, 107
Ste 8.3

Uviml 0.0

Vi 0.0

O 0.0

0. ~ 1.0

4, 0.0

0, —0.6, —-08

th —04, -02

S. K. SiNHA ¢ al.

pressure is necessary in order 1o avoid spurious oscil-
lations in the pressure field [13].

Gulerkin's weighted residual approach has been
used to derive the matrix equations for solving the
nodal values of velocity, temperature and pressure. The
residuc cquations are given by

Jj MAV-VydxdY = [0] (28)
]
A% .
” N, (a - +V-VV4+VP—PrvV
0 T

+MR-V—Ra Pr 0j> dXdy=1[0] 29

a0
N (144 St0)
4] T

+V-VO-V- (k*VO)) dxdy =[0]. (30)

Applying integration by parts to the viscous and con-
duction terms of equations (29) and (30), and sub-
stituting the interpolation expressions of equation
(27), the final matrix equations arc obtained in the
form

C,, Ch Cp Co] (U
ECyy Cay Cay Cay | | P
Z] Cyy Cyn Coy Ciy %
Co Cow Cov Cas il 01,
£ 0 0 0 I

10 f, 0 0 P°
B ,Z 0 0 f, 0 yo
0 0 0 fif,l0

(30

!

where the coeflicient matrices on the left-hand and
right-hand sides of cquation (31) represent sub-
matrices corresponding to the different nodes of the
clement. These sub-matrices, when assembled for all
values of i and j, form the clemental contributions to
the global matrix equation. The sub-matrix entries are
themselves given by

NN, 0N, ON,
C,, = RN AN N
a J_j\r At TN ¢ N ay

(NN, AN, 2N,
"\ex ex T iy oy

+ MRH/\QN,} dxdy

. oM,
Cp, = Jj; N, E)FdXdY

Ciy= J~J‘ MR NN, dXdYy
A
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Ciy=0
C,, :JJ dXdY
Cpy=Cyu=0
A
C,, = J M, Niaxay
J Y
(jll =
Cy= J ,N ,dXdY
6N _ON;
Ciy =
“ j[ Uex oy
+P GN,% 0N, éNn,
"\ox ox Tay oy
+MRny,-N,:|dXdY

Cyy = '”‘ —Ra Pr NN, dXdY
A°

4I_C42_C4?"'0

Cys —jj l:(l-l—A Ste )W\

~ 0N, cN-
+ N, U——X + N, V@Y
&N, ON, &N, éN,
i <ox ox+7ya‘y>]dXdY
N.N.
fi=|| . dxdy
f=0
f3 =f|

f4=Jj (l+ASte) / ’dXdY (32)
The shape function index i takes values 1-8 for the
momentum/energy equations and 1-4 for the con-
tinuity equation. The index j assumes values 1-8 when
it is associated with the variables U, V and 0, and 1-
4 for pressure. The elemental matrices are assembled
for all the elements of the domain and the resulting
matrix system is solved using the frontal technique
[14]. In view of the strong non-linearities exhibited
by the governing equations, a Picard-type iterative
scheme with under-relaxation has been employed, to
march from one time level to another.

A mesh of 10 x 10 elements has been used to simu-
late the results. The correctness of the numerical solu-
tions has been checked by a bench-mark comparison
with the known Neumann solution for a pure metal
system with constant properties and the details are
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reported elsewhere [9]. The CPU time taken for a
typical run was of the order of 3 min per time step on
HP-9000 series computer network.

RESULTS AND DISCUSSION

Results have been obtained for the range of par-
ameters covering Ra = 10°, 10*, 10°; conductivity
ratios k /k, = 1.0,0.5; k,/k, = 1.0, 1.5; liquidus tem-
perature #, = —0.4, —0.2 and solidus temperature
0, = —0.6, —0.8. Both anisotropic and isotropic
mushy zone permeabilities have been considered and
results have been presented in the form of com-
parisons between the two situations. A constant
Prandtl number has been considered since even a large
variation of this parameter does not have much effect
upon the heat transfer or fluid flow [9]. Also, the
parameter Ste has not been varied as it influences
only the transient evolution of solutions in a straight
forward manner.

The progress of the solidification fronts (liquidus
and solidus) with time is shown in Figs. 4(a)-(d). It
is observed that for small times, the curvature of the
liquidus front is small implying the predominance of
conduction heat transfer. For later times, convection
in the mushy zone as well as the fully-liquid region
becomes vigorous and therefore the liquidus front
assumes a curved shape; however, the solidus front
still remains flat in view of the small velocities in
its neighbourhood. For non-dimensional time of the
order of unity, the progress of the fronts is arrested
and a steady state configuration is reached. This is an
expected feature for a rectangular enclosure with two
isothermal and two adiabatic walls. 1t is also evident
that the extent of mushy zone increases with time,
implying a faster rate of movement for the liquidus
front due to convective heat transfer.

A comparison between the isotropic and aniso-
tropic situations indicates that the phase fronts are less
distorted when anisotropic permeability is considered.
However, the mean rates of movement of these fronts
are not very much affected. Thus, the overall impact
of anisotropy of the mushy zone permeability appears
to be the alteration of the shape of the liquidus (and,
to a small extent, the solidus) phase front.

In Figs. 5 and 6 the effects of the mushy zone size
upon the resulting isothermal patterns are compared
for isotropic and anisotropic situations. Figure 5 cor-
responds to dimensionless liquidus and solidus tem-
peratures of —0.4 and —0.6 respectively. Figure 6,
on the other hand, corresponds to 0, = —0.2 and
0, = —0.8. It is clear from the two figures that aniso-
tropic effects are significant only when the mushy zone
is larger. Indeed, at lower Rayleigh numbers, there
is hardly any difference between the isotropic and
anisotropic cases for smaller mushy range. It is worth-
while mentioning here the physical significance of
choosing different values for 6, and 0,. Although the
liquidus and solidus temperatures are constants for a
particular alloy system of given concentration, the
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(a)

T = 0.125

{c)
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=025

{4}

———— —

2

Isotropic

—--~ Anisotropic

Ra=10%,61=-02,04 =-08,k /ko =10, ke/ ko = 10O

F1G. 4. Progress of iquidus and solidus with time for isotropic and anisotropic cases.

non-dimensional values ¢, and (. could be different
depending upon the actual temperatures of the iso-
thermal walls. Thus, for the same alloy system, the
larger range of mushy zone implies a smaller difference

isotropic
- ==~ Anisotrpic

Ra= 10261 =-0.4,04=-086,ki/ ko= 1.0, ks ko=1.0,T =IO

F1G. 5. Effect of anisotropy on isothermal patterns for smaller
mushy zone.

between the wall temperatures. Further, the actual
sizes of the cavities may be different between Figs. §
and 6, in order to have the same Rayleigh numbers at
different values of T,— T.. Thus, a variety of par-
ameter combinations could lead to a larger or a
smaller mushy zone. In the present study, in order to
highlight the effects of property variation, a larger
mushy zone has been considered with 6, = —0.2 and
0, = —0.8.

The flow fields for the isotropic and anisotropic
situations are depicted in Figs. 6(b), (c) respectively
for Ra = 10°. The velocities are larger in magnitude
for the isotropic situation, particularly in the mushy
zone. This explains the reason for the larger curvature
observed in the shapes of the phase fronts and other
isotherms for the isotropic situation. In Figs. 7(a), (b)
the directional permeabilities (K, and K,) and the
porosity have been plotted in the mushy zone. The
permeability values are extremely large (approaching
infinity) near the liquidus and decrease sharply
towards the solidus, where they are zero. Along the
isotherms, the permeability values are smaller by an
order of magnitude as compared to the direction nor-
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(b) Isotropic (a)

Isotropic, ——--~ Anisotropic

-9,

(b&c)

{¢) Anisotropic

Ra=10%6,=-02,04=-08
k1/Ko= LO, ks/ko=10,T = LO

FIG. 6. Effect of anisotropy on temperature and velocity fields at Ra = 10°.

mal to the isotherms. The fact that the permeability
is much less in the approximate direction of flow
within the mushy zone results in smaller flow velocities
for the anisotropic case. With respect to porosity vari-

(a)

K = K= o]

(b)

K| ,Kz =>®©

N /
\‘ N\,
[0
A
\/

.
N

\\
\

1o

Scale:

Fi1G. 7. Directional permeabilities (K, K,) and isoporosity lines (¢ = constant) for anisotropic situation.

— 10 unit of K,
—— = unit of K,

Ra=10%,81=-0.2,85=-08,k1/ ko =10,ks/ko=10,T =10
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ation, it may be said that the gradient of porosity is
large at the top portion of the mushy zone as com-
pared to the bottom region. Therefore, flow effects are
significant only in the middle and bottom portions of
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(b) Isotropic
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{a) Isotropic, —— —— Anisotropic

6s

(¢c) Anisotropic

Ra=10%6,=-02,8, =-08
ki/ks= 1.0, kg /Ko =10, T= 1O

FiG. 8. Effect of anisotropy on temperature and velocity fields at Ra = 10*.

the mushy zone adjacent to the liquid and the cur-
vature of the isotherms also occurs in these portions
only.

The effects of Rayleigh number upon the flow fields
and the isotherms can be seen from Figs. 6, 8 and 9.
The magnitude of the velocity vectors considerably
increases with Rayleigh number, indicating that the
convective flow becomes more and more vigorous. It
is also observed that the velocities are smaller for the
anisotropic case for all Rayleigh numbers. A careful
examination reveals that the fluid flow tends to adjust
itself so as to minimize the residence time within the
mushy zone. For instance, at Ra = 10° and 10*, the
mushy zone is nearly of rectangular geometry. The
stream lines which pass through the mushy zone and
the liquid region are approximately elliptical for these
cases. At Ra = 10°, however, the shape of the mushy
zone on the liquidus side is considerably inclined to
the vertical, around the central portion. The flow lines
adjacent to this boundary also assume a nearly tri-
angular shape with a tendency for least residence in
the mushy zone. The isotherms in the mushy and
liquid regions become increasingly more distorted at
higher Rayleigh numbers due to convective effects.
The difference in isotherm shapes between the iso-

tropic and anisotropic situations also increases with
Rayleigh number.

The effect of thermal conductivity ratios upon the
isothermal pattern is shown in Figs. 10(a), (b). When
solid conductivity is larger than that of the liquid, the
rate of solidification is faster at all Rayleigh numbers.
The shapes of the isotherms are essentially the same
with only shift in their positions. for different con-
ductivity ratios.

The Nusselt number variation along the hot iso-
thermal wall is shown in Figs. 11(a), (b). For high
Rayleigh numbers, the Nusselt number is high in the
bottom region, with a tendency for the formation
of a thermal boundary layer. As expected, Nusselt
number is smaller in magnitude for the anisotropic
case due to smaller flow velocities. As Rayleigh num-
ber is reduced, the Nusselt number variation along
the surface becomes negligible, approaching the
conduction limit. In fact, there is hardly any dif-
ference between the isotropic and anisotropic situa-
tions for low Rayleigh number. For large Rayleigh
number, the wall Nusselt number at the top portion
decreases below the conduction limit; this is due to
reduction in heat transfer caused by the prior heating
of the fluid in the bottom portion. The rate of heat
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Fi1G. 11. Nusselt number variation along the hot wall at different Rayleigh numbers and thermal conductivity
ratios, for isotropic and anisotropic situations.

transfer on the liquid side decreases for smaller &, as
expected.

CONCLUSIONS

A variable property analysis has been developed for
the dendritic solidification of a dilute alloy, using the
porous medium approach. Giving due consideration
to the dendritic structure of the phase-change region,
an anisotropic permeability variation has been incor-
porated. A detailed parametric study of the two-
dimensional solidification within a rectangular enclos-
ure has been performed. The influence of anisotropy
is seen to be significant for large mushy zones as well
as at high Rayleigh numbers.
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ANALYSE DE PROPRIETES VARIABLES DANS LA SOLIDIFICATION D’UN ALLIAGE
UTILISANT L’APPROCHE DE MILIEU POREUX ANISOTROPE

Résumé—On présente un modéle théorique du transfert de chaleur et de I’écoulement pendant la sol-

idification d’un alliage. On a tenu compte en détail des variations des propriétés dans la région de

changement de phase dendritique. On adopte une approche de milieu poreux avec variation de la per-

meéabilité qui est anisotrope. Les effets de I’anisotropie sont observés étre significatifs si I’étendue de la zone
boueuse est grande ou si le nombre de Rayleigh est éleve.

UNTERSUCHUNG DER ERSTARRUNG VON LEGIERUNGEN MIT VARIABLEN
STOFFEIGENSCHAFTEN UNTER VERWENDUNG EINER NAHERUNG FUR ANISOTROPE
POROSE MEDIEN

Zusammenfassung—Es wird ein theoretisches Modell fiir Warmeiibergang und Strémung bei der Erstarrung
von Legierungen vorgestellt. Die Veridnderung der Stoffeigenschaften in dem kritischen Phasen-
dnderungsgebiet wird detailliert beriicksichtigt. Es wird eine verallgemeinerte Néherung flir porése Medien
angewandt, jedoch mit einer anisotropen Permeabilitit. Die Einfliisse der Anisotropie erweisen sich als
wesentlich, wenn die Erstarrungszone sehr ausgedehnt ist oder wenn die Rayleigh-Zahl groB ist.

AHAJIU3 NIEPEMEHHBIX CBOVICTB IPH 3ATBEPJJEBAHUMU CITJIABA C
HUCTIOJIb30OBAHUEM MOJEJIN AHHU3O0OTPOITHBIX NMOPUCTBIX CPEN

Annoramms—IIpencrapneHa TeopeTHUeCKas TEILIONEPEHOCA H TEUECHAA XKHIKOCTH B NPOLIECCe 3aTBEPIE-

BaHHs crulaBa. [Toapo6HO MccnemyloTCs H3MEHEHHs CBOWCTB Ha NEHAPHTHOM ydacTke ¢a3oBoro mepe-

xona. Hcnonpsyercs oGoGlueHHas MoJeiab NOPHCTHIX CPpel € AHH30TPONHOM NPOHHIAEMOCTBIO,

O6HapyXeHO, YTO BJIHAHHE AHH30TPONHOCTH ABJAETCH CYIIECTBEHHBIM NPH GOJIBIION MPOTHKEHHOCTH
IByxdasHoii 30Hb Wil NpH yucIie Pases.
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