
hi. .I. H<vu Muss Trunm/<~r Vol 35, No. I I, pp. 286s 2877, 1992 

Printed an Great Britain 
0017-9310/92 %5.00+0.00 

\V 1992 Pergamon Press Ltd 

A variable property analysis of alloy 
solidification using the anisotropic porous 

medium approach 
S. K. SINHA and T. SUNDARARAJANT 

Department of Mechanical Engineering, Indian Institute of Technology, Kanpur-208016, India 

and 

V. K. GARG 

Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A. 

(Received 10 December 1990 and in$nal form 3 December 199 1) 

Abstract-A theoretical model for heat transfer and fluid flow during alloy solidification is presented. A 
detailed accounting has been made for the property variations in the dendritic phase-change region. A 
generalized porous medium approach has been adopted, with the variation of permeability being aniso- 
tropic. The effects of anisotropy are observed to be significant if the extent of the mushy zone is large or 

if the Rayleigh number is high. 

INTRODUCTION 

SOLIDIFICATION of an alloy metal poses many for- 
midable challenges for theoretical analysis. Unlike in 

pure metal systems, the phase-change occurs over a 
range of temperatures encompassing a finite volume. 
The zone where solidification takes place (known as 
the mushy region) comprises both the solid and the 
liquid phases and is characterized by the growth of 
finger-like (dendritic) structures [l-3]. The buoyancy- 
driven flow of fluid in the mushy and fully-liquid 
regions significantly influences the rate of solidifica- 
tion as well as the shape of phase fronts, during the 
phase-change process. The presence of the alloying 
component often leads to mass transfer which greatly 
alters the microstructure and the mechanical prop- 
erties of the solidified metal. In addition, the thermo- 
dynamic and transport properties vary continuously 
over the whole domain of the mushy zone which needs 
to be taken into account in any accurate theoretical 
modelling. 

Various approaches have been adopted to model 
the flow in the mushy region. The most widely-used 
among them are the pseudo-viscosity method [ 11, the 
velocity ‘switch-off’ technique [2] and the porous 
medium approach [3]. Of the above, the porous 
medium model presents the most realistic view of the 
resistance offered by the dendrites to the flow in the 
mushy zone. The porosity of the equivalent porous 
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medium is taken equal to the volume fraction of the 
liquid. Evidently, the porosity is non-uniform in the 
mushy zone, varying from a value of unity in pure 
liquid to zero in the solid. 

Although the variable property porous medium 
approach has been adopted by many recent studies of 
alloy solidification, the important aspect of aniso- 
tropic variation in permeability in the mushy zone has 
largely been ignored [4, 51. For alloy metals, the fact 
that the mushy zone consists of a mixture of saturated 
solid and liquid phases in varying proportions, leads 
to a continuous variation in every thermodynamic or 
transport property. In addition, the strongly direc- 
tional nature of the dendrites results in anisotropic 
permeability of the porous medium in directions par- 
allel and normal to the dendrites [6]. 

In the present study, the thermal and flow aspects 
of two-dimensional solidification are investigated. All 
the important variations of properties have been taken 
into account, including the anisotropic nature of the 
mushy zone permeability. A fixed-grid methodology 
based on the finite element method has been 
implemented, which is suitable for analysing alloy 
solidification in any arbitrary two-dimensional 
geometry. 

MATHEMATICAL FORMULATION 

The two-dimensional solidification of an alloy 
material inside a rectangular enclosure with two adia- 
batic and two isothermal walls is considered. 
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NOMENCLATURE 

A parameter as defined by equation (25) I time 

A’ elemental area r temperature 

AS aspect ratio of the cavity V supcrticial (area-averaged) velocity 

( specific heat vcctot 

c’, I> c’, :, etc. elemental sub-matrix 21, L’, I/, ci components of superficial velocity 

coefficients as defined by equation (32) (dimensional and non-dimensional) 

d,. dz primary and secondary dendrite .Y, .r, X, Y Cartesian coordinates 

spacings (dimensional and non-dimensional). 

<J index for element number 
IT/_, ,;;I number of elements Greek symbols 

elemental sub-matrix coefficients thermal diffusivity 

as defined by equation (32) ; coefficient of thermal expansion of liquid 

R acceleration due to gravity “3 i angle made by the local gradient of 

h specific enthalpy ; heat transfer temperature with .x-axis 

coethcient C porosity (volume fraction of liquid) 

h, latent heat of phase-change at solidus 0 non-dimensional temperature 

temperature i latent heat of phase-change 

.i^ unit vector along y-axis p viscosity 

k thermal conductivity 1’ kinematic viscosity 

fL permeability tensor P density 

K,, K2 tensorial components of I$ in g1.02, 03, 04 non-dimensional variables as 

principal directions defined by equation (25) 

K,,. K,,. K,,. K,, tensorial components of z non-dimensional time 

I$ in global Cartesian coordinate system A7 non-dimensional time-step 

L width of the cavity R area of the calculation domain. 

nz, m,, m-. morphology parameters 
A4 non-dimensional morphology Subscripts 

parameter; linear shape function C cold wall 

N quadratic shape function h hot wall 

Nu,, local Nusselt number on hot wall, hL/k,, i,,j nodal indices 

Pr Prandtl number inil initial condition 

p. P dynamic pressure (dimensional and non- I liquid or liquidus 

dimensional) 0. ref reference values 

B non-dimensional porous medium S solid or solidus. 

resistivity tensor as defined by 
equation (9) Superscripts 

R,,, R,,, R,,, 4, tensorial components of 0 value corresponding to previous time- 

E in global Cartesian coordinate system step 

Ra Rayleigh number value corresponding to previous iteration 

Ste Stefan number * non-dimensional normalized value. 

Although mass transfer of the alloying component 
has important bearing upon the mechanical properties 
of the solidified material and also it partially affects 
flow and heat transfer processes, it has been ignored 
in the present study for the sake of simplicity. The 
flow field is represented in terms of the superficial 
velocity vector V (area-averaged vectorial velocity). 
By definition, the superficial velocity vector becomes 
zero in the solid region and equal to the actual velocity 
vector in the fully-liquid region. In the mushy zone, it 
depends on the local porosity and needs to be evalu- 
ated through the flow equations appropriate for a 
porous medium. 

For a densely-packed medium with small pore-spac- 

ing, Darcy proposed that the pressure drop through 
the medium is directly proportional to the flow rate 
and fluid density, and inversely proportional to the 
permeability of the medium. The permeability, in 
turn, was defined as an intrinsic property of the porous 
medium which characterizes the flow resistance 
offered by the medium. Later modifications to Darcy’s 
law have included the contributions of viscous and 
inertial stresses to the pressure gradient in the flow 
field [7,8]. These are applicable for large pore-spacing 
(or high porosity), high flow rates and when boundary 
layers exist adjacent to the confining impermeable 
walls of the porous medium. 

In the present study, the generalized Darcy’s equa- 
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tion has been considered which bears a close resem- 

blance to the Navier-Stokes equations, except for the 

term representing the resistance of the solid matrix. 

Such a description is essential for the alloy sol- 
idification problem since the variation of porosity 
across the mushy zone spans the entire possible range 
of zero to unity. Moreover, for the range of par- 
ameters studied herein, the inertial effects are sig- 

nificant and flow regions displaying boundary layer 
nature exist close to the walls of the enclosure [9]. 
Assuming the Boussinesq approximation for liquid 
density variation to be valid, the governing equations 
for flow through the anisotropic mushy zone can be 
represented as : 

Continuity 

Momentum 

$&)+v.v(;v) 

= - ;p+v,v. [;v (p)] 

Energy 

;i, (ph) +p,v * Vh, = v * kFT+h, $. (3) 

Except for the anisotropic permeability term, these 
equations are similar to those derived by Bennon and 

Incropera [IO] for alloy solidification with a stationary 
solid matrix in the mushy zone. In the momentum 
equation given above, the buoyancy contribution aris- 
ing from concentration gradients of the alloying com- 

ponent has not been considered. This assumption can 
be justified if the concentration of the alloying com- 
ponent is very small. Some of the earlier investigators 
[ 1 I] have used the porous medium enthalpy h in place 
of liquid enthalpy h, in the convective term of the 
energy equation (3). The inconsistency resulting from 
such usage is reported elsewhere [9]. 

In order to incorporate the realistic nature of flow 
resistance offered by the dendritic structures in the 

mushy zone, it is necessary to consider the per- 
meability to be dependent on direction. For instance, 
Poirier [6] has shown that the permeability values are 
vastly different from each other (sometimes differing 
by orders of magnitude) in directions parallel and 
normal to the dendrites. Considering the dendrites as 
a bank ofcylindrical objects and using the appropriate 
Blake-Kozeny pressure drop correlations, he has 
derived the following expressions 

3 

K, = f$ 

and 

where K, and K2 are respectively the permeabilities 
in the directions parallel and normal to the dendrites, 
E is the medium porosity and m,, m2 are parameters 
which depend on the morphology of the dendrites. 

The parameters m, and mz can be correlated to the 
primary and secondary dendrite spacings d, and d2 
[6] through the relations 

and 

m, = c,(E)dqdq? (54 

m2 = c,(s)dr,&2. (5b) 

In the region where flow is significant (E > 0.3) the 
functions C,(E) and c~(E) are nearly constants and 
therefore without much loss in accuracy constant 
values may be used for them. The values of the den- 
drite spacings d,, d2 and the exponents p, q, r, s 
depend on the nature of the alloy system. For a typical 
system such as PbSn alloy, it turns out that m , z m z 
if d,/d, is taken as 3 (see ref. [6]). In all the numerical 
computations performed in the present study, it has 
been assumed that m, = m2 = m. The corresponding 

permeability expressions are of the form 

where the constant m can be taken to be a charac- 
teristic parameter of the alloy system. 

Having obtained the permeabilities K, and K, in 
the principal directions, it still remains to determine 

what the principal directions are, at any location in 
the mushy zone. It can be argued that the primary 
dendrite direction should be along the local normal 
to the isotherm passing through the point, since den- 
drites tend to grow in that direction [12]. Similarly, 
the transverse direction for the dendrites can be taken 
parallel to the isotherm. Thus, permeability can be 
defined as a tensor 

y= 
K, 0 L 1 0 K2 

in the coordinate system of the principal directions. 
For a global Cartesian system, the permeability can be 
represented as 

y= 
K,, Ku 1 1 K,., K,.,. 

where the tensorial components K,,, K,,( = KY,) and 
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K,, can be obtained using the rules of tensorial trans- 
formation. 

It is more convenient to use the non-dimensional 
‘matrix-resistivity’ tensor & in place of the per- 
meability tensor in the flow equations. Defining 

g = mg ’ (9) 

it can easily be verified that B is dimensionless and 

depends only upon the locai porosity. The com- 

ponents of 5 are given by 

R” = m 

K, +K? K, -K, 

2K,KI 
Aces 2y 
2K, Kz 

(104 

(lob) 

K,-K, 
R,,. = R,,, = -m-Km 2~. (1Oc) 

I ? 

In the above expressions, y is the angle made by the 
primary dendrite direction with the .\--axis (Fig. 1) and 
it is given by 

(11) 

where iJT/cYx and i?T/dy are the local directional 
derivatives of the temperature field. 

With regard to the energy equation, suitable 
approximations are to be invoked for evaluating the 
enthalpies h and h,, and also the porous medium 
density p and the effective thermal conductivity k. It 
is important to note that p and k are volume-averaged 
properties while enthalpy and specific heat are mass- 
averaged. Thus, the properties for the mushy zone can 
be written in terms of the corresponding values of the 
liquid and solid phases as follows 

p = r:p, + (1 - E)P, 

k = sk,+(l -c)k, 

and 

P 

(12a) 

Wb) 

(12c) 

rh 

FIG. 1. Approximate direction of growth of primary dendrite 
at a point in the mushy zone. 

However, the key relationship still needed is the one 
between the liquid fraction, the local temperature and 
the local concentration. For dilute systems, the prop- 
erties such as density and conductivity can bc taken 
as functions of temperature only, since a small quan- 

tity of the alloying component is not expected to alter 
the values significantly. An additional simplification 
which is highly useful. is the linear dependence of 

density upon temperature in the mushy-zone. For 
many alloy systems, the change in density from solid 
to liquid is not large. For instance, mild steel under- 
goes roughly 6% increase in density upon solidi- 

fication. In view of the small change in density, a 
linearization may be justihcd. Considering constant 
densities for solid and liquid phases, the density vari- 
ation can be represented as shown in Fig. 2(a). Refer- 

ring to the figure, the lever rule leads to the expression 

T- T, 
P = P5 T,_T, +PI 

T- T, 

T, - T, 
(13) 

Comparing expressions (I 2a) and (13), the liquid frac- 
tion E can be written as 

(14) 

The enthalpy vs temperature relationship is of the 
form depicted in Fig. 2(b). The latent heat of sol- 
idification is obviously a function of temperature and 
can be written in a general form as 

i(T) = h,+ c\ dT (15) 

with 

h, = A( T,). (16) 

The liquid enthalpy h, is given by 

P 

h I (b) 

5 

TO TS T Tl 

T 

FIG. 2. Variation of density (p) and enthalpy (h) with 
temperature. 
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s r 

h,(T) = c, dT+I(T) 
7’0 

k*=k “=!! P 
(17) 

0 -PC 
k,’ ’ p,’ o’=;’ *-p,c, 

where the enthalpy of solid is assumed to be zero at 

temperature To. For the sake of convenience, the 

~ _ p&-t (PI - ps)csTs 
3- 

p,c,(T, - Ts) 

value of T, can be set equal to zero. Using constant 
values of specific heats in both the phases, the fol- 

lowing relations are obtained 

i(T) = h,+(c,--c&T-TJ (18) 

c,T,+h,+c,(T,--T,)E 
fJ4 = ~~- 

c,(Ti, - TJ 

r 
1 for 0 > B, 

and 

h,(T) = c,T+I(T). (19) 

The mixture enthalpy at a location in the mushy zone and 
is given by 

1 when 0, < 0 < 0, 
P,(, -E)c,T+p,Eh, A= 

h=---- (20) 0 otherwise (25) 
/, 

Using the above-described functional dependences 
For the rectangular enclosure (Fig. 3) the following 

for properties, the non-dimensional equations can be 
boundary conditions have been applied. Referring to 

derived as 
Fig. 3 

u= v=o 
(21) 0 = - 1 

for X=0, O< Y<As (2W 

ae 
ay O 

for Y=O, O<X< 1 G’6b) 

Ii= v=o 
o=o for X= 1, 0~ Y< AS (26~) 

a0 
p=O 
ay 

for Y=As, O<X<l. (26d) 

/ “x- \- I, -- \-I, 

The initial conditions are 

U=V=Q=O at r=O. WeI 

The generalized formulation presented above 

+RaPrO (23) 

(cJ~+Acs~)~+U~+V~=& k*& 
( > 

“‘“‘0 

T = Tc 

where 

X=2, Y=$ U2, v=$, + Y 

a0 I u=v=o .- 

” = ” 5 0 

T= Th 

p=pL’ (j=T-T,,, 2 
&f=$, Pr=ay1, Ix ay 

LZ.0 

Pd ’ T,, - T, ' 0 
VLi 

Ra=gL3B(Th-Tc) ko 
) a,=- 

FE. 3. Problem geometry with boundary and initial 

XO”I Plcl conditions. 



involves constant dimensionless paramctcrs such as 
/?a. Pr. hf. O,, 0,. k,/k,, and liI;l;,, as well as the dimen- 
sionless variable cocficicnts 0,. crI‘. G t and g4 whose 
values change across the mushy zone. For the para- 
metric study, the dcnsitics and the specific heats have 
been taken to be eyuai for both the phases and this 

leads to the simplification 

A summary of all the property/parameter values used 

in the numerical calculations is provided in Table 1. 

SOLUTION PROCEDURE 

The governing equations (21)-(X) have been 
solved numerically subject to the boundary and initial 

conditions (26a)--(26c), along with permeability cal- 
culations via equations (IO) and (11). An implicit time 
marching procedure coupled with the finite element 

method (FEM) has been employed. Although a 
simple rectangular geometry has been studied herein, 

a general 2-D/axisymmetric code has been developed 
which can easily be applied to any arbitrary geometry. 
The choice of FEM has specific advantages for the 
modelling of the alloy solidification problem. In view 
of the powerful interpolation and numerical inte- 
gration schemes employed in FEM, property vari- 
ations can be accounted for even within a single 
clement. 

Eight-noded serendipity type elements have been 
used to discretize the solution domain. Temperature 
and velocity variations have been ~ntcrpolated with 
quadratic functions while pressure has been inter- 

polated linearly within each element. The elemental 
interpolation schemes can be expressed in terms of the 
nodal variable values as 

i- 1 ;- 1 

8 

II = z: N,U,, P = i lW,P, (27) 
i- I /- I 

where N,, M, are the quadratic and linear shape func- 
tions respectively. The lower-degree interpolation for 

Table I. Test problem data 

1.0 
1.0. l.s 
I .o, 0.5 
IO” 
10’ 
IO’. 10J, IO’ 
8.3 

0.0 
0.0 
0.0 
- I.0 
0.0 

-0.6, -0.8 
-0.4. -0.2 

pressure is necessary in order to avoid spuriou\ oscrl- 
hilions in the pressure field [l-i]. 

G&-kin’s vvcightcd residual approach has hccn 
used to derive the matrix equations for solving the 

nodal values of velocity. temperature and pressure. The 

rcsiduc equations are given by 

Mi(Q.V)dXdY= [O] 1w i 

JJ i N, ‘Iv +V.QV+QP-PrV’V 
(2 ?t 

dXdY= [Of (29) 

+V*V(I-V.(k*V@) 
> 

dXdY= [O]. (30) 

Applying integration by parts to the viscous and con- 
duction terms of equations (29) and (30), and sub- 
stituting the interpolation expressions of equation 

(27), the final matrix equations arc obtained in the 

(311 

/ 

where the coefficient matrices on the left-hand and 
right-hand sides of equation (31) represent sub- 
matrices corresponding to the diKerent nodes of the 
element. These sub-matrices. when assembled for all 
values of i andj, form the elemental contributions to 
the global matrix equation. The sub-matrix entries are 

themselves given by 

+ MR.y,yN,N, dXd f 1 

c,, = MR ,,X,X, dX d Y 
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c,, = 

cz, = 

+MR,,N<N, dXdY 1 
c,, = ss -RaPrN,N,dXdY 

A’ 

c,, = c,> = c,, = 0 

+k* i;Ni “N! c?N, aN, 

ax ax +3TZ >I dXdY 

f4 = (1 +A Ste)zdXdY, (32) 

The shape function index i takes values 1-8 for the 
momentum/energy equations and 14 for the con- 
tinuity equation. The indexj assumes values 1-8 when 
it is associated with the variables U, V and 0, and l- 
4 for pressure. The elemental matrices are assembled 
for all the elements of the domain and the resulting 
matrix system is solved using the frontal technique 

[14]. In view of the strong non-linearities exhibited 
by the governing equations, a Picard-type iterative 
scheme with under-relaxation has been employed, to 
march from one time level to another. 

A mesh of 10 x 10 elements has been used to simu- 
late the results. The correctness of the numerical solu- 
tions has been checked by a bench-mark comparison 
with the known Neumann solution for a pure metal 
system with constant properties and the details are 

reported elsewhere [9]. The CPU time taken for a 
typical run was of the order of 3 min per time step on 

HP-9000 series computer network. 

RESULTS AND DISCUSSION 

Results have been obtained for the range of par- 
ameters covering Ra = 101, lo”, 10’; conductivity 
ratios k,/ko = I .O, 0.5 ; k,/k,, = 1 .O, 1.5 ; liquidus tem- 
perature H, = -0.4, -0.2 and solidus temperature 
0, = -0.6, -0.8. Both anisotropic and isotropic 
mushy zone permeabilities have been considered and 

results have been presented in the form of com- 
parisons between the two situations. A constant 
Prandtl number has been considered since even a large 

variation of this parameter does not have much effect 
upon the heat transfer or fluid flow [9]. Also, the 
parameter Ste has not been varied as it influences 
only the transient evolution of solutions in a straight 
forward manner. 

The progress of the solidification fronts (liquidus 
and solidus) with time is shown in Figs. 4(a)-(d). It 

is observed that for small times, the curvature of the 
liquidus front is small implying the predominance of 
conduction heat transfer. For later times, convection 
in the mushy zone as well as the fully-liquid region 
becomes vigorous and therefore the liquidus front 
assumes a curved shape; however, the solidus front 
still remains flat in view of the small velocities in 
its neighbourhood. For non-dimensional time of the 
order of unity, the progress of the fronts is arrested 
and a steady state configuration is reached. This is an 
expected feature for a rectangular enclosure with two 
isothermal and two adiabatic walls. It is also evident 
that the extent of mushy zone increases with time, 
implying a faster rate of movement for the liquidus 

front due to convective heat transfer. 
A comparison between the isotropic and aniso- 

tropic situations indicates that the phase fronts are less 
distorted when anisotropic permeability is considered. 
However, the mean rates of movement of these fronts 
are not very much affected. Thus, the overall impact 
of anisotropy of the mushy zone permeability appears 
to be the alteration of the shape of the liquidus (and, 

to a small extent, the solidus) phase front. 
In Figs. 5 and 6 the effects of the mushy zone size 

upon the resulting isothermal patterns are compared 
for isotropic and anisotropic situations. Figure 5 cor- 
responds to dimensionless liquidus and solidus tem- 
peratures of -0.4 and -0.6 respectively. Figure 6, 
on the other hand, corresponds to 0, = -0.2 and 
H, = - 0.8. It is clear from the two figures that aniso- 

tropic effects are significant only when the mushy zone 
is larger. Indeed, at lower Rayleigh numbers, there 
is hardly any difference between the isotropic and 
anisotropic cases for smaller mushy range. It is worth- 
while mentioning here the physical significance of 
choosing different values for 0, and 0,. Although the 
liquidus and solidus temperatures are constants for a 
particular alloy system of given concentration, the 
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/ 7 = 0.125 
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fc) 
-3 8 

I I I 7: = 0.5 

I I 

I 
I 
i 

- Isotropic 

---- Anisotropic 

Ra = 104,8t= -0.2, es = -0.8,k,/ko = 1.0, kS/ k. = 1.0 

FIG. 4. Progress of fiquidus and solidus wrth time for isotropic and anisotropic cases 

non-dimensional values I), and 0, could be different 
depending upon the actual temperatures of the iso- 
thermal walls. Thus, for the same alloy system, the 
larger range of mushy zone implies a smaller difference 

- Isotropic 
- - -- Anisotrpic 

Ro= IO%, =-0.4.8,=-0.6,kt/k,= 1.0, ks,‘k,=I.O,T=l.O 

FIG. 5. Effect ofanisotropy on isothermal patterns for smaller 
mushy zone. 

between the wall temperatures. Further. the actual 
sizes of the cavities may be different between Figs. 5 
and 6, in order to have the same Rayleigh numbers at 
different values of T,, - T. Thus, a variety of par- 
ameter combinations could lead to a larger or a 
smaller mushy zone. In the present study, in order to 
highlight the effects of property variation, a larger 
mushy zone has been considered with f), = -0.2 and 
Ii, = -0.8. 

The flow fields for the isotropic and anisotropic 
situations are depicted in Figs. 6(b), (c) respectively 
for Ru = 10’. The velocities are larger in magnitude 
for the isotropic situation, particularly in the mushy 
zone. This explains the reason for the larger curvature 
observed in the shapes of the phase fronts and other 
isotherms for the isotropic situation. In Figs. 7(a), (b) 
the directional permeabilities (K, and K,) and the 
porosity have been plotted in the mushy zone. The 
permeability values are extremely large (approaching 
infinity) near the liquidus and decrease sharply 
towards the solidus, where they are zero. Along the 
isotherms, the permeability values are smaller by an 
order of magnitude as compared to the direction nor- 
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(b) Isotropic 

\ N-2-H 
8s 81 

Stole : -- = 40.0 
(bat) 

1 \ . - .’ 

05 81 

(cl Anisotropic 

(a) - Isotropic, - --- AnisotropIc 

Ro = 105, 81 = - 0.2,8,=-0.8 

kl/ko= 1.0. k,/k,= LO,7 = 1.0 

FIG. 6. Effect of anisotropy on temperature and velocity fields at Ra = lo5 

ma1 to the isotherms. The fact that the permeability ation, it may be said that the gradient of porosity is 
is much less in the approximate direction of flow large at the top portion of the mushy zone as com- 
within the mushy zone results in smaller flow velocities pared to the bottom region. Therefore, flow effects are 
for the anisotropic case. With respect to porosity vari- significant only in the middle and bottom portions of 

(a) (b) 

Scale: 
-10 unit of K, 

-- -I unit of K2 

Ro = IO5 ,q = -0.2.8, = -0.8, kl/ k. = 1.0, kS/ k, = LO,7 = 1.0 

FIG. 7. Directional permeabilities (K,, KJ and isoporosity lines (E = constant) for anisotropic situation 
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(b) lsotroplc 

-. - -- ’ 
0s 81 

Scale: - = 10.0 
Cb8c.l 

(a) - Isotropic, -- -- Anisotropic 

Ra = 104, 01= -0.2,0, = - 0.8 

kl/k, = 1.0, k,/k, = 1.0, T= 1.0 

(cl Anisotropic 

FIG. 8. EfYcct ofanisotropy on temperature and velocity fields at Ra = IO”. 

the mushy zone adjacent to the liquid and the cur- 
vature of the isotherms also occurs in these portions 
only. 

The efTects of Rayleigh number upon the flow fields 
and the isotherms can be seen from Figs. 6. 8 and 9. 
The magnitude of the velocity vectors considerably 
increases with Rayleigh number, indicating that the 
convective flow becomes more and more vigorous. It 
is also observed that the velocities are smaller for the 
anisotropic case for all Rayleigh numbers. A careful 
examination reveals that the fluid flow tends to adjust 
itself so as to minimize the residence time within the 
mushy zone. For instance, at Ru = 10’ and 104, the 
mushy zone is nearly of rectangular geometry. The 
stream lines which pass through the mushy zone and 
the liquid region are approximately elliptical for these 
cases. At Ra = IO’, however, the shape of the mushy 
zone on the liquidus side is considerably inclined to 
the vertical, around the central portion. The flow lines 
adjacent to this boundary also assume a nearly tri- 
angular shape with a tendency for least residence in 
the mushy zone. The isotherms in the mushy and 
liquid regions become increasingly more distorted at 
higher Rayleigh numbers due to convective effects. 
The difference in isotherm shapes between the iso- 

tropic and anisotropic situations also increases with 
Rayleigh number. 

The effect of thermal conductivity ratios upon the 
isothermal pattern is shown in Figs. IO(a), (b). When 
solid conductivity is larger than that of the liquid, the 
rate of solidification is faster at all Rayleigh numbers. 
The shapes of the isotherms are essentially the same 
with only shift in their positions. for different con- 
ductivity ratios. 

The Nusselt number variation along the hot iso- 
thermal wall is shown in Figs. II(a), (b). For high 
Rayleigh numbers. the Nusselt number is high in the 
bottom region, with a tendency for the formation 
of a thermal boundary layer. As expected, Nusselt 
number is smaller in magnitude for the anisotropic 
case due to smaller fow velocities. As Rayleigh num- 
ber is reduced, the Nusselt number variation along 
the surface becomes negligible, approaching the 
conduction limit. In fact, there is hardly any dif- 
ference between the isotropic and anisotropic situa- 
tions for low Rayleigh number. For large Rayleigh 
number, the wall Nusselt number at the top portion 
decreases below the conduction limit; this is due to 
reduction in heat transfer caused by the prior heating 
of the fluid in the bottom portion. The rate of heat 
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FIG. 9. Effect of anisorropy on temperature and velocity fields at Ra = 10'. 
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FIG. 10. Effect of solid and liquid thermal conductivity ratios upon isothermal patterns at (a) Ra = 10' 
and (b) Ra = lo’, for anisotropic case. 
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e1 =-0.2,0, =-0.8,T=1.0 

FIG. 1 I. Nusselt number variation along the hot wall at different Rayleigh numbers and thermal conductivity 
ratios, for isotropic and anisotropic situations. 

transfer on the liquid side decreases for smaller k, as 

expected. 

CONCLUSIONS 

A variable property analysis has been developed for 
the dendritic solidification of a dilute alloy, using the 
porous medium approach. Giving due consideration 
to the dendritic structure of the phase-change region, 
an anisotropic permeability variation has been incor- 
porated. A detailed parametric study of the two- 
dimensional solidification within a rectangular enclos- 

ure has been performed. The influence of anisotropy 
is seen to be significant for large mushy zones as well 
as at high Rayleigh numbers. 
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ANALYSE DE PROPRIETES VARIABLES DANS LA SOLIDIFICATION DUN ALLIAGE 
UTILISANT L’APPROCHE DE MILIEU POREUX ANISOTROPE 

Resume--On presente un modtle thtorique du transfert de chaleur et de l’ecoulement pendant la sol- 
idification d’un alliage. On a tenu compte en detail des variations des proprittes dans la region de 
changement de phase dendritique. On adopte une approche de milieu poreux avec variation de la per- 
mtabilitt qui est anisotrope. Les effets de I’anisotropie sont observes itre significatifs si l’etendue de la zone 

boueuse est grande ou si le nombre de Rayleigh est Cleve. 

UNTERSUCHUNG DER ERSTARRUNG VON LEGIERUNGEN MIT VARIABLEN 
STOFFEIGENSCHAFTEN UNTER VERWENDUNG EINER NAHERUNG FUR ANISOTROPE 

PORBSE MEDIEN 

Zusammenfaasung-Es wird ein theoretisches Model1 fur Warmeiibergang und Strijmung bei der Erstarrung 
von Legierungen vorgestellt. Die Veranderung der Stoffeigenschaften in dem kritischen Phasen- 
Hnderungsgebiet wird detailliert beriicksichtigt. Es wird eine verallgemeinerte Niherung fur porose Medien 
angewandt, jedoch mit einer anisotropen Permeabilitat. Die Einfliisse der Anisotropie erweisen sich als 

wesentlich, wenn die Erstarrungszone sehr ausgedehnt ist oder wenn die Rayleigh-Zahl grog ist. 

AHAJIM3 HEPEMEHHbIX CBOI?CTB IIPH 3ATBEPAEBAHHH CHJIABA C 
IKfIOJIb30BAHFiEM MOAEJIH AHH30TPOHHbIX I-IOPMCTbIX CPEH 

AmoTauiu-IIpencraBneHa TeopeTsrecKan TennonepeHoca B Tegemu mHaKocm r4 npouecce saTBepne- 

BaHAIl CllJIaBa. ~O~pO6IiO HCCJIen)'IOTCX H3MeHeHSiK CBOkTB Ha XeHLIpEiTHOM )WlCTKe ~a3OBOr.o llepe- 

XOna. kiCnOJtb3yeTCK o6o6uewar MOAeJlb nOp&iCTbIX CpeA C aHEi30lpOIIHOfi IIpOHHUaeMOCTbIO. 

06HapyxeH0, ST0 BJIHXHNC? aHH30TPOIlHOCTB XB,,ffeTCR CylI&%TBeHHbIM IIpH 6onbmoi-r lTpOT5DKeHHOCTH 

nisyx@a3rroii 30rrbt rum npe 9ncne P3nen. 


